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RESUME.

The following paper contains a new, simple method of calculating the air forces to which
thin wings are subjected at small angles of attack, if their curvature is not too great. Two
simple integrals are the result. They contain only the coordinates of the wing section. The
first integral gives the angle of attack at which the lift of the wing is zero, the second integral
gives the moment experienced by the wing when its angle is zero. The two constants thus
obtained are sufficient to determine the lift and moment for any other angle of attack. This
refers primarily to a two-dimensional flow in a nonviscous fluid. However, in combination
with the theory of the aerodynamical induction, and with our empiricel knowledge of the
drag due to friction, the results are valuable for actual wings also. A particular result obtained
is the calculation of the elevator effect. The following is an outline of the subject as treated
in this report:

I. Introduction.
II. Calculation of the elevator effect.
II1. General formula for any section.
IV. Examples of the zero angle.
V. Thin sections with upper and lower boundaries.
VI. The moment coefficient.
VII. Examples of the moment coefficient.
VIII. Table of the sections investigated.

I. INTRODUCTION.

By changing the angle between the stabilizer and the elevator the wing section formed
by the combination of stabilizer and elevator is altered, and this alteration gives rise to new
aerodynamical forces. It is useful to discuss this phenomenon from the theoretical point of
wew, however imperfect the result may be as a consequence of neglecting the viscosity of the
air. A theoretical investigation at least gives the limit of what to expect. It enables the
investigator to survey and keep in mind a great number of isolated experiences, whether the
agreement between theory and experience be more or less close. It induces him to refleci on
the phenomenon and thus becomes a source of progress by guiding him to new observations
and expenments It has often occurred even thet some relation was thought to be confirmed
by experience till the progress of theory made the relation improbable. And only then the
experiments confirmed the improved relation, contrary to what they were supposed to do
before. A very conspmuous example of this is the discovery of differences in the atomic weight
of certain elements. But is it really necessary to plead for the usefulness of theoretical work?
This is nothing but systematical thinking and is not useless as sometimes supposed, but the
difficulty of theoretical investigation makes many people dislike it.

In this first section I wish to give a short summary of the theory which I am going later
to apply and to expand. This theory deals with the relation between the shape of a wing
section and the air forces applied to it by a nonviscous fluid. Only the two-dimensional prob-
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lem is considered. The theory thus forms the completion of the theory of the induced drag,
in which latter the three-dimensional arrangement of the wings and the lift produced by them
alone is considered, without paying attention to the details of producing the lift. The value
of the induced drag and the effective a.ngle of attack of every parf of the wings result from
the calculation. The theory of the wing section, however, gives no drag at all, for the drag
additional to the induced drag is due to viscosity. Nor does the theory of the wing section
glve the true value of the maximum lift. It can be stated, therefore, that the theory of the
ng section in its present state glves no indication whatsoever of the practical value of the
wing investigated. Still there remain three important pieces of information which can be
derived from the theory, all more or less agreemg with the real phenomenon. These are the
relation between the angle of attack and the lift, in particular the angle of attack for zero lift,
the travel of the center of pressure, and the distribution of pressure. It has to be kept in mind
that the angle of attack thus calculated for a particular lift coefficient is not yet the true angle
of attack of a finite wing. The induced angle of attack has to be added.

We are indebted for the theory of the wing section to Kutta. He showed how the method
of the two-dimensional potential can be used to calculate the flow around wing sections and
hence to deduce the resulting air forces. He confined himself to the straight line and simple
circular segments. His idea is to pick out among the multitude of possible potential fiows
that particular one around the wing section, which at great distance degenerates into parallel
flow and which leaves the wing section at the rear edge. His results are simple and 1mportant
The direction of the air flow in the case of zero lift of a circular segment of small curvature is
parallel to the line dividing into equal perts the angle between the chord and the tangent at
the rear end. The lift is proportional to the sine of the angle of attack. The slope of the curve
of the lift coefficient plotted aga.mst the angle of attack is almost independent of the shape and
is 27 (the angle being measured in arc and the lift coefficient being formed by dividing the
lift per unit of area by the dynamical pressure). That is, for small lift:

L=2x8sin o, V§

Joukowsky extended the theory, and investigated sections which at their rear end almost
coincide with a circular segment, having there a common tangent for the upper and lower
side. The entire form is generated from the circle, a circular segment forming as it were the
skeleton of a Joukowsky section. Comnsidering the connecting line between the rear edge and
a pole near the center of curvature of the leading edge as the theoretical chord, the rule for the
direction of zero lift remains as before. The slope of the lift curve is hardly changed; the lift
is proportional to the sine of the angles as before.

Karman replaced the circular segment in the Joukowsky section by one formed by two
circular segments. This is already mentioned in the second paper of Kutta. These sections
have two different tangents at the rear end, and the line which divides the rear angle into two
equal parts determines the direction of zero lift together with the theoretical chord as before.
The law for the lift is the same again as for the circular segments of Kutta. Mises discusses
in a general way how to obtain even more general sections and proves some general theorems
concerning them. The most important is the theorem that the slope of the lift curve plotted as
before is never smaller than 2, and is always exactly 2« if the section is thin and the curvature
small. So far it can be stated that only sections are investigated, the medial line of which is a
circular segment. If the section is only moderately thick and if the curvature is moderate, too,
the lift agrees with that of the segment according to the law found by Kutta.

II. CALCULATION OF THE ELEVATOR EFFECT.

In this paper I'intend to investigate any thin section of small curvature at small angles of
attack. It is necessary to discuss first more closely the method used by Kutta for the caleulation
of the lift of a wing section. He starts with an entire circle, and considers the potential flow
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around it, which was well known before him. I} can be obtained by superposition of the sym-
metrical flow around the circle and a vortex in the center of the circle. By changing the strength
of the vortex the point where the flow leaves the circle can be chosen at will for any given direc-
tion of the flow at a great distance. The lift produced by the flow is proportional to the product
of the velocity at a great distance and the strength of the vortex. It is not essential for the
calculation that the deseribed fiow never really occurs; it is only a means of calculation. Kutta
transforms now the plane in such a way that it remains unaltered at a great distance from the
circle. The circle itself, however, is transformed into a new curve, the wing section to be investi-
gated. The transformation has Lo be of that kind which is called isogonsl and leaves in general all
angles unaltered. It is well known that each analytical function gives such atransformation, the
plane represented by complex numbers. The rear edge of the new section corresponds to one
particular point of the circle. After having found this point it is only necessary to determine
the lift of that flow around the circle that leaves the circle at that particular point and at a
great distance has the same magnitude and direction as the flow around the section investigated.
This lift equals the lift experienced by the section.

The simplest case, the one, moreover, which I need in the following development, is the
straight line. The transformation of the circle with the radius 1 and ifs center coinciding
with the origin of the system of coordinates into the straight line connecting the two points
§=—2 and {=42 is expressed by the analytical function

(1) §'=z+%

For large values of z the function degenerates into {=z and hence leaves the plane unal-
tered at a great distance. The rear edge of the straight line {=+42 corresponds to the point
z=+11 of the circle. Each point of the straight line corresponds to those two points of the
circle which have half the abscissa. It is known now that the lift of the circle for the flow which
leaves it at the point 2=+1 and whose direction at a great distance has. the angle « with the
real axis is

StV’%Sin a

for the unit length of the cylinder. More generally the lift is » times as great if r is the radius
instead of 1. The lift of the straight line, or the rectangular plate represented by it, is the
same, and the lift coefficient therefore, since the chord has the length 4, is 2« sin a.

It is not necessary for the following development to enter into the details of the flow around
Kutta segments, or Joukowsky and Karman sections. I at once proceed to the subject of this
paper. In his paper Karman speaks of the possibility of finding the transformation for any
section approximately, if this section differs but slightly from another section the transforma-
tion of which is known. He gives also the formulas for the approximation, but he does not
prove them. I proceed to apply a method obviously similar to that of Karman. The formulas
1 obtain, however, do not agree with those given by him. I am going to study the effect of an
infinitesimal change of a section, and I chose as the original section the straight line. I begin
with the investigation of a broken line, the two portions of which form almost 180°. This
broken line represents a tail plane, the elevator being slightly turned from the mean position.
The length of the tail plane is-4, the two ends coincide with the ends of the original stralght
line at the points ¢=+2. This is necessary, the function of transformation being unsteady in
these two points. The lift produced by the small change of the shape is small, too, of course,
but the ratio of the effect to the change which causes it is finite and can be calculated

58006—28——17
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Imagine the straight line and the circle drawn in Figure 1 and above the straight line the
new section consisting of two straight lines.. The ordinates of the new section may be called

N Legding edge

Fia. 1. Transformation of the tail plane.

¢ and the abscisse z. If y, and ¥, denote the ordinates of the intersection points of the two
lines of the new section with the imaginary axis, we have:

&=y, 2% for the one part and

&=, 2—-2“0 for the other.

I try now to find the curve in the neighborhoad of the circle which corresponds to the new
section according to the transformation:

1 .
&) f=pt _ S

The derivative of { with reference to z is:

@) o B

Introducing the angle ¢ between the real axis and the radius at each pomt of the clrcle, the
points of the circle are represented by— Do .- e
(3) Z=ele
and (2) can be written— - T

It

@ %al—e—ﬂezsinwe-w - A

dt is the change of the originally straight tail plane and equals i &, that is th saiy is:

(8) =1y, (1—cos ¢)
on the right side of the hinge and _ -
(6) d¢=1y, (1+cos ¢)

on the left side of it, the posmve real axis being supposed to be drawn toward the right from
the hinge.

At the hinge (5) and (6) agree, the angle correspondmg to the abclssa of the hmge bemg
denoted by ¢, it follows therefore that—

Y (1—cos ¢,) =Y (1+cos @0

1—cos @,
(7) y y31+cos @



GENERAL THEORY OF THIN WING SECTIONS. 249
By substituting (5) resp. (6) in (4) I obtain

d 1y,(1 —cos (1+cos o)
® o= Y resp. i TP

and the radial small distance of the new curve from the original circle is

Yal—cose lz o _ %

(9) =3 ” tan 5 between o= to,
(10) yltcose b .. ¢ 5 between T
=9 Tsin @ 2 i —®Pe

The problem is now to transform the original circle z=e¢! into the curve e (1+17) so that the
value at infinity remains unaltered.

For the present it is not necessary really to perform this transformation; it is sufficient
to imagine the transformation performed approximately by the function:

(11) - (1+Z Bl )

where the a’s are coefficients to be determined properly. This transformation indeed leaves

the plane at infinity unaltered. It is exact if 4 approaches zero. For the coefficients are

imagined to be determined by the following method. Let 4 be developed in a Fourier’s series
between 0 and 2x.

(12) A + A, cos o+ A, cos 20+ .4, cos 3o+ +
' 1= B, sin ¢+B, sin 20+ B, sin 3¢+ +

As is well kmown, the coefficients A and B are the integrals:

2

A,= %fn cosnede
(13) 9

2x

1 .
Bn=;!nsmn¢d:p

If, as in this case, the section has no thickness, the coefficients A are all identically zero.
The coefficients ¢ in (11) may be formed according to the equations:

ay=—(4;+18By)
@n=—(Aa+1 B

This transformation does not give the desired transformation exactly. The point of the circle
z=e¢*! is transformed into the point.

_1__ _ {1 —A,cos¢g—B, sin p— A, 0082(p B, si.nzqa——}
Z, +1(,A12¢p B, cos ¢+ 4, sin 20— B, cos 20+
(14) - =e1—y+i(d, sin g+ 4, sin2p+)}—1 (B, cos ¢+ B, cos 2p+)]

7 being supposed to be very small, i—=e‘*" (1—1u), the value desired. Hence the point repre-
S

sented by (14) does not exactly coincide with the new curve in the neighborhood of the circle,
but differs from it by the last two brackets of (14). The difference is, however, small when
compared with 3. For the additional vector is parallel to the circle, so is approximately the
g-curve. The end of the vector z is therefore situated almost at the curve, but for a different
radius vector than that of the original point of the circle z. (14) ean be considered as the
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desired function of transformation. Since for ¢=0, p=0, the curve which by the transforma-
tion §‘=z+é1— is transformed into the modified teil surface coincides with the eircumference of

the original cirele at its two ends. The problem then is to see by how much the point of the circle
z=1 at the end of the diameter is displaced by the transformation (1). This may be calculated
easily, as will be shown. When deduced it will give the value of the additional vector, which
we may assume can be used for other points in the neighborhood, too, because it is a continuous
quantity. So, the point of the circle corresponding to ¢ =0 for the transformed curve is dis-
placed an amount equel and opposite to this.

The position e#! of the point of the new curve correbponding to the point z=1 of the circle
is found by using equation (14) and substituting ¢=0. 7 is zero at that point, the changed
section coinciding at the ends with the original section. All sines are zero and there remains:

(15) ee=1—3(B,+B,+B,+ + - - - -
The right-hand side of (15) is approximately equal to e~¢®1+2++) Hence
(16) oy=By+ B+ Byt + - - ¢ -

It would be possible to determine the B’s and to find the value of ¢, by adding them.
This procedure, however, can be simplified. By going back to equation (13}, (16) can be written:

amn ¢1=%fn (sin ¢ +sin 2<p+si£1 3o+ +) de.
]

The bracket in (17) is formally the developmenb of cot 3 ¢ in a Fourier’ s senes, though
indeed this series is not. convergent. For . _

1 1 OOS<p/2 <psmma
(18) zwfcot—ﬂsmnqadga 211_ s ‘p/22sm2cosz sm(pd"’

1 L3
=2Trf(003‘ﬁ+ 1)[(2 cos(n—1)p+2cos(n—3)p+ +:|d<pifnis
[}
odd.
or 1 x .
=§;J(cos<p+l)[(2 cos (n—1)¢p+2cos(n_3)¢+++1:|d‘p

if n is even.

n: results the most simply if we go back to the equation

This transformation of S:E]

: sin n¢=§1;;, (enot — g—nol)
and divide this by
sin <p=2li (es! —e—el) |

The result _
e@Delpg@-Belyga-Bel 4 .

is identical with -

2 cos (n—1) ¢+2 cos (n—8) p++ - - +1if nis even.
In both cases, whether n be odd or even, (18) equals 4. And although the bracket in (17) is
not convergent, the integral (17) is convergent in general and can be written

' 2

_ Lf 4
(19) "1'5;_"7 cot.§ do
b
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(17) represented as we remember the angle of the radius vector through the point of the curve =

corresponding to the point 2=1, ¢=0 of the circle. According to what has been said, the
point of the circle corresponding to point ¢=0 of the curve has the radius vector

2x
1
(20) oty = *g;bfﬂ cot g de

I have thus obtained the point of the circle corresponding to the rear edge of the curve
investigated. The lift of the section equals the lift of the circle provided that the potential
flow leaves it at the point determinated. The lift is zero, in particular if the circulation vanishes
and the fluid flows symmetrically around the circle. It is easy to see that in that case the velocity
ab infinity is parallel to the radius vector of the point determined. Hence it appears that the
% just found is the angle of attack for the section investigated necessary for zero lift, i. e.
is the “angle of zero Iift.” :

I at once proceed to caleulate this integral for the present problem. % has to be substi-
tuted from equation (10) and (11). Hence the integral for a, consists of two parts:

(21) a¢=—jy’d¢+2—f&cot’ ? do
+
The solufion is "
1y B 1y, *
: — o 1 @ — %

(22) o 2r2i2cot2+qa r+272[¢r

Substituting (7) for y, I obtain finally .
gt @, 29 _x(l—cos %)
(28) % 2;(2 b0 S T oos g 14 Gos v,

For positive y,, that is, for the elevator bent down, «, is negative. The flow around the circle
being horizontal at a great distance leaves the circle below the horizontal axis. Such an ele-
vator with the line of connection of the two ends of the whole tail plane horizontal experiences
a positive lift therefore according to the result of the development.

At the same time the stabilizer is no longer horizontal and there remains en elementary
calculation in order to obtain the effect of the elevator separately. Thisis especially simple if ele-

vator and stabilizer are equal and hence ¢,=90°. Then (23) gives o, = —% - The angle between

stabilizer and elevator is y, (the length of the whole tail plane being 4) and the angle of attack
of the stabilizer is —4y,. The positive turning of the elevator not only neutralizes the effect
of the negative angle of attack of the stabilizer, but there is also the effect of the angle of attack
y/xin addition. Hence the whole effectis y, (4 + 1/x) and per unit of angle of elevator to stabilizer
divided by the ratio of the elevator to the whole tail plane it is:

1 1)
_+_
?1(2—1'=1+§_1 64
1 xr
¥

For other positions of the hinge the ratio of the length of the elevator to that of the tail plane
is (1 —cos ¢,), the angle between stabilizer and elevator is:

1—cos g, )
Y\ G Trcos oy T2

and the angle of attack of the stabilizer is

% (1 —cos ¢,)

2 (I+cos ¢
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Let K be the coefficient which gives the effect of the elevator turning according to the equation:

-

« effctive= WES 03

e effective is the angle of attack of the whole undeformed tail plane which has the same effect
as the turning of the elevator by the angle 8; E denotes the chord of the eIevator and S the
chord of the stabilizer. Then Kis =~ . = . _

1—cos ¢,

%tY¥13 0 roos oy |
1— ) 1—cos ¢, 1
2 €0 %o J ¥\ 2 (1 + cos ¢ T 2,

Substituting «, from equation (20), this can be written

K=2¢otsin ¢
71l—cos ¢,

In Figure 2 the coefficient obtained is plotted against the elevator ratio F%TS’:%’ If the

tail plane consists only of the elevator the coefficient of course is 1 and the calculation gives

24 \
20 [
N
1.6 <
——
X 12

0./23476‘78.3[0
r—

Fia. 2. Elevator effect K’ plotted against elevatorstall plane.

this. The tests with flat teil plane models show considerably smaller values of A, about 1.3.
The entirely flat section is aerodynamically so bad that 40 per cent of the elevator effect is
lost. A test with a better shaped section, however, gave K=1.7, which agrees better with the
result of the theoretical calculation.

Il. GENERAL FORMULA FOR ANY SECTION.

The previous celculation of the angle of attack for zero lift shows that this angle is obtained
by infegrating an expression which contains the coordinates of the central curve of the section
investigated as a factor. Hence the angle for zero lift is a linear function of the coordinates,
and the law of superposition holds true. That is to say, the zero angle of any section is the
sum of, the zero angles of any other sections if the coordinates of the first sections are also the
sum of the coordinates of the other sections at each point. The result of the previous calcu-
lation hence holds true for thin tail planes slso, the central curve of which originally was not a

straight line but was slightly curved in any way. ‘And the result can be used also for the cal-

culation of the effect of two elevators in front and at the end of the stabilizer turned by any

small angle. If % denotes the ratio of the front elevator of the entire tail plane, the factor A’

is to be taken from Figure 2 for _%=(1 —%}) and the factor K, of the front tail plane then is

K=K —T—El—]?——- 1. This results by superposition of the two tai.l‘planes, each with one hinge only.

S T — N
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By increasing the number of the hinges, at last every shape of the section can be obtained.
It is more convenient, however, to go back to the second term of equation (2I), which repre-
sents the part of the zero angle due to the stabilizer. Imagine any curve to be composed of a
zigzag line, consisting of an infinite number of pieces of radii vectors originating in the leading
edge of the section and of connecting short vertical lines. (Fig. 3.) These vertical lines do

F1a. 3. Zig-zag line replacing the curve of section.

not furnish a contribution to the mtegral of the zero angle; and this integral is obtained by
substituting in

(218) —ay=o f Lo
0

the value of ¥, for each point. This is, if ¢ denotes the ordinate of the section

£
(24) Y1=T—cos ¢
hence
2x
1 [k 1
@5) - T%=3x )2 T—cos <pd“°

Eliminating finally the angle ¢ and introducing instead: of it the position z of the point of the
chord, = +2 being the ends of the chord,

1
CcOs (o=-2-I

de

I obtain

ek [
A

or, for the length 2 of the chord,

+1

@7) = —L [ £

* 1(1—5)1/1—3’

In the general case that the length of the chord is £ the angle is

+i

B

The integral (27a) is the essential result of the previous development. The problem I am
dealing with is the calculation of the theoretical lift of & line-shaped section of small curvature.

{27a)
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For this calculation I first deduce the angle of attack which gives the lift zero. I choose the
scale so that the chord is 2. On this curve with the ordinates £ from the chord and the rear
edge at the point z=1 of the chord, the other end having the abcisse 2= —1, I apply the integral
(27). The angle of zero lift toward the chord results. Omitting for the moment the induced
angle of attack, the theoretical lift is then

L=2x V=§ sin (a—ay) S

~ Introducing now the induced angle of

attack

a= - 57.3 in degrees.
"2 .

while 5 is the span of the monoplane, the angle of attack corresponding tv any lift is

5730 "F : Edm. ” LzL
wf(l_ )Vgr(z) rbzpzp "'SV”’

1V. EXAMPLES OF THE ZERO ANGLE.

In this part I proceed to calculate some examples of the zero angle. It is sufficient to
celculate some typical curves; any more comphcated one can be created by superposing of
these.

(@) The section may be represented by the curve

t=y(l1—z%

where ¥ is a small quantity and denotes the greatest ordinate. This curve is typical of simple
symmetrical arcs, like a circular segment of practlc,a,lly constant curvature. The integral (27)
is now

r.ol

1—2? i
f(l +2) /1 -2 v

= h_yf\/1+a:
=—= | arc.sin z+ /1 — :c’

: ==Y

The angle between the tangent at t;he rear edge and the chord is —2y. In accordance with

the results of Kutta, Joukowsky, and Karman the diraction of the zero flow is that of the line
which divides into two equal halves the angle between the rear tangent and the chord.

(6) The example of the section consisting of two equal straight lines is contained in the

second part of this paper. This section lies above the preceding at all points if the end tangents

coincide and it is to be expected therefore that the zero angle is greater. It was found to be

% of the rear angle between the elevator and the chord.
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(¢) Unsymmetrical sections consisting of two or three straight lines are contained in
section IT of this paper.

(@) A continual unsymmetrical curve can be obtained for instance by the expression
t=y(1+2)*(1—~2)™

For m=n=1 the segment discussed first results. The zero angle is
to=—Y f (1-+a-b(1 —oym-¥ida

The integration is especially simple if m= 3/2. Then I obtain

+1
o= —L f (1—g)n-ids

hutt

the integral is ,
' __y[a—a=H)|
= —2 | ——

x n+2

-1
and the angle has the value

n+§
%= "g = T

n+3

2

The maximum of the section has the abscissa _g, or, otherwise expressed, its distance from

the leading edge is 5 ——= of the chord. For the symmetrical case n=3/2 the a.ngle results
2
%= —Y_
For n=2.5 the maximum is at 5/8 of the chord. The angle results—g_ % The maximal Height

is1.14 y.
(¢) A section with a positive and negative curvature is

t=—y(l+x)(1—2)2

the zero angle is ay=— f \/l'l'“’da:

_ .Y
=ty

(f) An example which is important in actual applicatins is a section which coincides with
the chord at the front half of the chord, the second half being represented by the equation

t=y(l—z?)2?
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At =0 the section has a horizontal tangent. The angle of the rear tangent is 2y. The zero

angle for this section is
_ g :c‘1/1 2D
% T1+z

1

. 2. 2,2\ )—o
o =...—| 5 &rc sin $+<-3*+§+‘3— Ji=2

1 2
0= —y[;+3—,r:|= —0.46 y

If the section is given graphically or by a table, the zero angle can be determined numeri-
cally. TFor this numerical calculation the following table can be used:

0

TasLE 1.
Por cent of ehord...eoeeeenrccomeeeeanaranenne. -zai Bl wf 15| w| 28| | | 4w 4 50
;er ............................................ 6.46| 2.38) 0.841 | 0.f68( 0.314] 0.282 | ©.181| 0150 | 0.128] 0.112| 0.102
. LA - N |
Per cent of chord....... ameeseemacmmncenraneaennnn e 55 6| .65 0 % 80 85 20 05 .5
|07 U ORI 0.001 | C.085] 0. nx1 0.078 | 0.076 | 0.078 ] 0082 0.003| 0.120 o—o_s—t

Determine the ordinates of the section starting at the chord. If the curve runs beneath
the chord the ordinate must be considered negative. The chord is supposed to be divided
into 100 per cent, 0 per cent being at the trallmg edge and 100 per cent at the leading edge-
Now multiply each ordinate for the per cents given in the first line of Table 1 by the factor

given in the second line and add all products obtained. Their sum multiplied by — §7—t§

gives the angle of attack in degrees at which thelift is zero. The chord and the ordinates of
course have to be measured in the same units.

V. THIN SECTIONS WITH UPPER AND LOWER BOUNDARIES.

If the section has some thickness so that the upper and lower boundaries no longer coincide,
the coefficients A4 in equation’ (13) are no longer zero. The section can be imagined to be
created by first drawing the line of connection of all points equidistant from the upper and
lower boundaries, which I will call the central curve of the wing section. Afterwards the
thickness, which is supposed to be small when compared with the chord, is created by adding
equel distances on both sides of the central curve. The coefficients B of equation (13) depend
only on the central curve, the coefficients A only on. the added thickness. The integral for
the zero angle containing the B’s only and not the A’s, it can be supposed that the section
with but a small thickness has the same zero angle and lift as its central line,

However, two things are then to be considered. A4, in equation (12) is now no longer
zero, but has a small finite value. Hence the first factor in the bracket of (i4) is somewhat
greater than 1 and hence the lift is slightly increased. It is not necessary, however, to pay
attention to this fact. The real lift is always slightly smaller than the theoretical lift and the
result is likely to be better if this refinement is neglected.

Another more serious difficulty occurs at the transformed leading edge of the section.
If the leading edgs of the section is blunt, its transformation shows & picture as in Figure 4. The
new curve is no longer approximately parallel to the circle at the leading edge, but has an

irregularity. The assumptlon for the correctness of the transformatlon (14) holds true no
longer. _
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Thiscan beremedied, however, by adding area to the central curve all around theleading point.
The corner in Figure 4 is then filled and the resulting curve is smooth again (Fig. 5). The
integral (19) is not affected by this change, if the addition is symmetrical. The increase of
the area of the new curve is small even when compared with the original increase. The depth
of the small triangle is filled if the added distance in the direction of the chord is as great as
the thickness of the section near the leading edge. Hence the rule arises to make the central
curve of the wing section end in the center of curvature of the leading edge.! The zero angle
for a thin section with two boundaries is calculated as before, substituting in integral (27)
the coordinates of the central curve from the rear edge to the center of curvature of the leading

.\_—I/ -
F1a. 4. Traniformation of the head of & F1a. 5. Transformation of the head of &
thick saction. thick section, the centrel curve ending

at the center of curvature.

edge. This central curve has to be brought to the standard length 2. The lift, however, is
to be calculated as before, with the entire chord.

VI. THE MOMENT COEFFICIENT.

The previous discussion can easily be completed by the calculation of the moment which
the thin section with small curvature experiences at small angles of attack. Remembering
that the angle of attack « is a small quantity, the velocity of the flow along the circle, frequently
mentioned befors, is

2V,(sin p— cos o+ (a—ayp))

and the velocity at the corresponding points of the straight line is

a—a,
(28) V= V,,(l—a ot -+ £

Only the term ~a cot ¢ contributes to the moment around the middle point =0, and this
moment for the chord 2 is

(29) M=—xpal? A, =—%a

After the variation of the chord into the section, the velocity at each point is only slightly
changed in general. The variation is calculated by determining the variation of the potential.

The corresponding point of the circle has no longer the same angle ¢, but the angle ¢ is increased

by a small quantity which may be denoted ¢ and is given by (14).

(81) _ e=B, cos ¢+ B, cos 2o+ +

—A, sin p— A4, sin 29— —
The variation of the potential is
2eV, sin ¢
as o first approximation; and hence the variation of velocity at the points of the section is
[2 {2
: cos (p+a¢ sin ¢

sin ¢

1A subsequent Investigation shows that it is better to choose that point as eni of the central curve which divides into two equal
parts the distance between the center of curvature and theleading edge. I shall show thisin s later paper.
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The variation of the pressure is the product of density, original velocity, and variation of velocity
The moment is the integral of this variation of pressure, multlphed by 2 dz=—4 cos ¢ sin ¢
and therefore equals

(32) M,=8 VJ’JI(% cos ¢ 8in ¢+ ¢ cos ’<p) do

all quantities being omitted which contain the product of two small quantities.

Now
de —B, sin ¢—2B; sin 2o — —
de —A, cos ¢—2A4, cos 20— —

Substituting e and % only the terms with B contribute to the value of the integral, und I obtain

— M,=4VpB,x
B, was determined by

2%
1 .
2= E sin 2¢dy

7} 280 ¢
(1]

or, expressed as a function of z,

By fs(l x/z)*(1+x/z);

Substituting this, I finally obtain for the moment

+2

(33) My=27a [2EE__
| [ =

the corresponding absolute coefficient is

M,
sm" -

-1

1/1 === for the chord =2

The entire moment around the middle of the section is expressed by the absolute coefficient
which is the sum of the two obtained coefficients

+1

- M x zkde

(35) StV’g_—a2+ p jr
=1

If the front and rear half of the central curve are equal, the integral in (35) is identically zero.
The coefficient of moment then is

-

tol »

This agrees with the result of Kutta for circular segments.

For sections with different upper and lower boundaries the central curve is to be taken
again.

The numerical calculation of the integral in (35) can be performed by using the next table.
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TaBLE 2.
Percentofchord.... . .o i, 25 ] 0| " 15 20 25 30 35 40 45 50
Faetor.... 0.104 | 0.3 0.13% | u.ﬁm '0.075_ 0.058 6.044 0.031 o.tml 0.010 | ©0.000
Percentofchord. . .. il el ] 60 i - 70 75 80 S5 90 | 95 97.5
T s SRRSO —0.010 [—0.€20 |—0.031 |—0.044 —0.058 —0.075 (—0.098 {—0.132 —0.203 | —0. 104

The procedure is analogue as with the calculation of the zera angle. The sum is to be mul-

tiplied by in order to obtain the additional coefficient of moment. The calculated coefficient

of momenﬁ ‘has not yet the same meaning as the moment coefficient Cu ordinarily used.
coefficient has reference to the leading edge and not to the middle of the section. Calling the
integral in (35) the additional moment coefficient 0. the ordma.ry moment coefficient Ca

results
+1
T
Om 'J—Z’_I- 0
(36) Cn=0.25 C'I,- §a°+ O,
The center of pressure has the position
x
-G
_Ca_ Gog ™ M,
)37( OP=7=0.25———

VII. EXAMPLES OF THE MOMENT COEFFICIENT.

This

The additional moment coefficient is different from zero for unsymmetrical sections only

and I proceed to calculate it for the two unsymmetrical sections discussed before.

This was first the section which in its front half was a straight line and in its rear half was

represented by the equation
f=—y (1-2) 2
The additional coefficient of moment (%, is

1 1
(1-—23)2
Cn,=—Yy —"Vi—_—?dz= ——yfa:’-\/l --23 dx,
1]

1
1 1
R |

= ——y
As 2 second example take the S-shaped curve
f=—y (1-29z
f(l a:’):c’ dz
= —y —_——
+

-1
Cn =—y | m(x’—%/l zz-i-l arc sin «
) % 2 - 2 2

T
(.Tmo'=' —-2' Y
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The values obtained have to be substituted in formula (36) or (37)

that is to say, if the moment coefficient is zéro for zero hi‘t. In most practical cases the right
hand additional moment is too small to neutralize the moment at zero lift. The condition is
fulfilled, however, for all sections with straight central curves, the moment to be neutralized
being then zero toa. Thesa are not the only sections, however, .

Theoretically, every tail of a section can be modified, so that the section has no longer
any travel of the center of pressure, by superposing on the section the section discussed last
but one, representing a bending upward of the tail.

A calculation shows, however, that this proceeding is not effective enough if the section
was very unstable and does not lead then to good sections. Consider, for instance, the case
of superposing a circular segment and this curve. The section may have the equation

f=y, (1—2%) +y, (1—22)2?

st the rear half, the front half is circular as before. The zero angle of this section is, according

to the previous calculations N
. . a=—Yy, +0.64 y,
the additional moment is o
2

15 Y2
and the condition of constant center of pressure is

w 2
§|:?/1 —0.64 ?/3]"_“1—5‘ Ys
It follows that

Y, =.725 9,
TaBLE 3.
Shape: ‘Eqastion of shnpe. oo c..'
e i w- VL 2oy T .
— fm0 : ()} ¢
. —— — s e e T T L .o -
R L Ly 0
. - . " . g
E-P(ld:ﬁ)_ —U-; 0
-3 ) 2
E—v(l— ’ B " 0
T HRY 2l 8 18
fmp(l—2)"(142) " —¥3, ¥
f=—pu—-2T) £ =L
7 .
0 between —1and 0 _(_1_+2 _2
" | f=yn(-2) betweon 08nd +1 W itar i

LR T

s
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